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ABSTRACT 

Certain important transcendental equations occur in the case of elastic angu- 

lar regions while analyzing these regions for flexure, vibration, and buckling. 

Previously these transcendental equations have been solved for roots and the 

data has been tabulated for different boundary conditions, as the angle of the 

region is varied. The purpose of this paper is to demonstrate that once we 

solve for the roots at a specific angular region, the roots for angular regions 

with angles ranging from 0 to 2TT can be obtained via forward integration. 
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2        Roots of Transcendental Equations 

1. INTRODUCTION 

Certain transcendental equations occur in the case of solution of polygonal 

plate problems dealing with flexure, vibration, and buckling [1-3]. The roots 

of these equations need to be evaluated to form eigenfunctions which are 

essential for the solution of the mode shape of the plate during flexure or 

vibration. Also the eigenfunctions can be used to find the frequencies of 

vibration of sectorial, triangular, quadrilateral, and other polygonal plates. 

Several different methods have been used in the past to find the frequen- 

cies of vibration of plates. An overview of the some of the studies on the free 

vibration of plates is given in [4]. Ref. 5 derives an equation for finding the 

eigenfrequencies of polygonal plates with free simply supported mixed edges 

and Ref. 6 analyzes the free vibration of right triangular plates using a su- 

perposition method. In [7], the Ritz method is used to find the fundamental 

frequencies of five-sided plates which are obtained by cutting out an isosceles 

triangle from one corner. The dynamical analogy with membranes is used 

in [8] to study the free vibration of regular polygonal plates with simply 

supported edges. In [9] finite elements are used to analyze annular sectorial 

plates having their inner circular edges clamped. All of these plates under 

arbitrary boundary conditions can be analyzed with the method of the eigen- 

functions given in [2]. Although we emphasize the classical problems related 

to homogeneous isotropic thin plates under small deflections, there may be 

suitable extensions of the methodology to the anisotropic, nonhomogeneous 

and composite material cases listed in [10]. 

Ref. 11 tabulates the first ten complex roots of these transcendental 

equations as the angle of the angular region is varied from 15° to 180° in steps 

of 5°. Also if real roots are present, these are also tabulated in ascending 

order.   In this paper we show that once the roots are known at a specific 
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angle, the roots at all the other angles ranging from 0 to 2TT can be found 

by solving a differential equation which relates the roots to the angle of the 

region. 

2. TRANSCENDENTAL EQUATIONS 

In this section, we indicate how the transcendental equation for an angular 

region arises while solving for basis functions for the clamped case. Once the 

basis functions are formed, the solution for flexure or vibration of the angular 

region can be expressed as a linear combination of the basis functions. Since 

any polygonal plate can be subdivided into angular regions, the solution on 

the polygonal plate can be obtained by requiring the solutions on the angular 

regions to satisfy continuity conditions along suitable diagonals. 

Let the vertex of the angular region be at (0,0) with one of its edges 

coinciding with the x-axis. Let a be the angle of the angular region. The 

equation of motion of the angular plate is given by [12] 

A P d2ib 

where D is the flexural rigidity, p is the uniform mass density per unit area, 

ip is the transverse displacement, and V4 = V2V2, V2 being the Laplacian. 

Requiring simple harmonic vibrations tp = w(r, 6)e~tU}t, we get 

„4 ( d2       Id        1   Ö2V 

2 

where \i — . The edges of the angular region can be assigned any of the 

classical homogeneous boundary conditions. As an example, the clamped 

boundary conditions are 

w(r,a) = 0, —-(r,a) = 0. 
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For the sake of clarity, we now indicate how basis functions and transcen- 

dental equations can be formed for the angular region. These basis functions 

are used in [1] for finding the deflection of quadrilateral plates and in [2] for 

finding the frequency of vibration and mode shape of quadrilateral plates. 

The method of solution for V4w = fiw can be indicated as follows. 

Let wo(r, 6) be such that V4
Iü0 = 0, and w\(r, 9) be such that V4w\ = /J-W0. 

Continuing in this fashion, we define Wi+i by V4u>i+i = \iwi. Suppose w{, i = 

1,2,... satisfy the given boundary conditions. Then clearly w = Y^=owi 

satisfies V4w = (iw and the boundary conditions. We now indicate how this 

procedure can be applied to problems associated with the angular region. 

We have V4wo = 0. The functions w0 are given in [1,11] for different 

boundary conditions. Note that on any compact angular region, we can nor- 

malize the radius vector such that \r\ < 1 on the compact region. Choosing 

w0(r, 6) = rx+1(A0 cos(A+l)0+5o sin(A+l)0+Co cos(A-l)0+-Do sin(A-l)0), 

the clamped boundary conditions imply that the 4x4 determinant 

/ l o l o \ 
cos(A+l)a sin(A+l)a cos(A-l)a sin(A-l)a j 

det I —u- 
0 A+l 0 A-l I 

\-(A+l)sin(A+l)a     (A+l) cos(A+l)a      -(A-l)sin(A-l)a     (A-l) cos(A-l)a / 

The above equation is equivalent to the transcendental equation 

0 0 0 sin  Xa — A  sin a = 0. 

Solving the transcendental equation numerically for A, we get a complex 

sequence {Xj}^ which we arrange in the order of increasing positive real 

part. 

For each A, we can determine AQ,BQ,CQ and Do of wo(r,0) upto an 

arbitrary multiplicative constant (e.g., let AQ = 1) based on the boundary 

conditions. 
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Let A = Xi for some i. We need to get w\ such that 

V4wi = IXWQ = /irA+1(A0 cos(A + 1)0 + B0 sin(A + 1)0 

+C0cos(A - 1)0 + Dosin(A - 1)0). 

Hence, 

_     A+51"        .4ocos(A + l)0 + £osin(A + l)0 
W1 ~ ^    LP +5)2 - (A + i)2]^ +3)2 - (A +x)2] 

Co cos(A - 1)0 + -Dp sin(A - 1)0 
+ [(A + 5)2-(A + l)2][(A + 3)2-(A + l)2]. 

+rx+5[A1 cos(A + 5)0 + Bx sin(A + 5)0 

+Ci cos(A + 3)0 + Di sin(A + 3)0], 

where the homogeneous part rx+5[Ai cos(A + 5)0+5i sin(A + 5)0 + Ci cos(A + 

3)9 + Di sin(A + 3)0] enables satisfaction of the boundary conditions on 0 = 0 

and 0 = a. 

Thus select Ai,Bi,C\, and Dx to satisfy the four boundary conditions 

ti/i(r,0) =tfli(r,a) = -fif(r>°) = ~df(r>a>) = 0> 

Since A satisfies the transcendental equation sin2 A a — A2 sin a — 0, to get 

a nonsingular system for the solution of A\, B\, C\, and £>i, we should have 

sin2 (A + 4)a - (A + 4)2 sin2 a/0. This can be easily verified. 

Continuing in this manner, we get for i > 1, 

Wi = wi + rX+1+4i(Ai cos(A + 1 + U)9 + £* sin(A + 1 + 4i)0 

+d cos(A - 1 + 4t)0 + Di sin(A - 1 + 4i)0), 

where V4u5j = /nu;-i, and Ai,Bi,d, and I>i are selected such that to* sat- 

isfies the boundary conditions along the edges. 
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3. DIFFERENTIAL EQUATIONS 

Let a be the angle of the angular region and v be the Poisson's ratio. The 

transcendental equations for various boundary conditions are given by the 

following table [1,11]. 

TABLE 1: Transcendental Equations 

Case 

Boundary 

6 = 0 

Condition 

e-a Transcendental Equation 

1 Clamped Clamped sin2 Xa = A2 sin a 

2 Free Free (3 + vf sin2 Xa = (1 - u)2X2 sin2 a 

3 Clamped Free (3 + v)(l- v) sin2 Xa = 4 - (1 - u)2X2 sin2 a 

4 Clamped SS sin2Aa = A sin 2a 

5 SS Free (3 + i/)sin2Aa = -(1 - i/)Asin2a 

6 SS SS 2                       2 sin  Xa = sin a 

In the table above, SS means simply supported. In cases 1, 2 and 6, 

the transcendental equations may be further broken down into those for 

symmetrical and anti-symmetrical modes. 

In cases 1,2, and 6, the transcendental equation can be written as 

a2 sin2 Xa = (bX + c)2 sin2 a 

for suitable constants a, b and c. The transcendental equation for the sym- 

metrical mode is 

a sin Aa + (bX + c) sin a = 0. 

Taking differentials on both sides, we get 

[A da + a dX]a cos Xa + bdX sin a + (bX + c) cos a da = 0. 
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This results in 
dX      — [aA cos Xa + (bX + c) cos a] 
da aa cos A a + b sin a 

In the anti-symmetrical case, we get 

dX      — [aAcosAa — (bX + c) cos a] 
da aa cos Aa — b sin a 

In cases 4 and 5, the transcendental equation can be put in the form 

a sin 2Xa = bX sin 2a 

for suitable a and b. The differential equation can be derived as 

dX      2(bXcos2a — aXcos2Xa) 

da 2aa cos2Aa — 6 sin 2a 

For case 3, the transcendental equation is 

a sin2 Aa = 4 — bA2 sin2 a, 

where 
a = (3 + v)(l-v), 

b = (l-v)2. 

The relevant differential equation is . 

dX       —[bX2sm2a + aXsm2Xa] 

da aa sin 2Aa + 2bX sin2 a 
f 

The parameter n = Aa tends to vary more slowly than A as a is varied 

from 0 to 2ir. Thus, from a computational point of view, it might be beneficial 

to formulate the differential equations in terms of /i. For the symmetrical 

mode of cases 1,2, and 6, the differential equation is 

d\i      -(bß + ca) cos a + -£■ sin a 

da aa cos fx + b sin a 
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For the anti-symmetrical mode of cases 1,2, and 6, the differential equation 

is 
dfj,       (b/j, + ca) cos a—^-sina 
da aa cos ß — b sin a 

- ■■'•• 

The differential equation for cases 4 and 5 is 

dp      b(2ß cos 2a - £ sin 2a) 

da        2aa cos 2/x — b sin 2a 

For case 3, the differential equation is 

dii _ b(£)2[-a sin2a + 2sin2 a] 

da aa sin 2/x + 26 (^) sin2 a 

It can be observed from the numerators of the right sides of the differen- 

tial equations for \x that as a tends to zero, the numerators in all cases tend 

to zero also. Thus, for moderate a, the parameter n is relatively constant. 

4. ADVANTAGES OF FORWARD INTEGRATION 

One of the advantages of the proposed method is that if the roots are found at 

an arbitrary angle, the roots at any other angle in the range of the initial and 

final angles can also be tabulated with significantly reduced computing effort. 

Only forward integration is needed to compute the corresponding roots at 

the intermediate angle. However, as can be observed from the examples in 

Section 5, the forward integration may not yield all the roots and in fact may 

occasionally result in spurious roots. We observed that almost all of these 

missing roots are real and it is not difficult to compute these using any of 

the standard methods. Some extra effort is needed to compute the missing 

complex roots and these can be computed using a search procedure. In spite 

of these obstacles, there is a significant reduction in the computing effort by 

the use of the forward integration technique since the usual search procedure 
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for all the complex roots is more time consuming and involves an intelligent 

choice for the initial approximation for the roots. 

For moderate a, since the parameter \x = Act is relatively independent of 

a, the time taken for the initial approximation of the roots can be reduced. 

However, when we consider the whole range of [0,2n], the value of (i varies 

significantly. We present several examples in Section 5 illustrating the vari- 

ation of /x with a. Our method is especially useful in cases where there is 

significant variation in [i with a.. It is easy to plot the various values of [i 

as a varies. 

Almost all the complex roots and most of the real roots are obtained 

by this procedure. However, some of the roots need to be found. It is a lot 

simpler to find the real roots. One of the observations from Ref. 11 is that 

at least for 0 < a < v, the real roots are smaller than the least magnitude 

of the real part of the complex roots for almost all types of boundary condi- 

tions. The only exception to this is the clamped-free case. We will present 

examples involving clamped, clamped-free and simply supported-free bound- 

ary conditions in Section 5 to illustrate the usefulness of our approach. It 

happens on occasion that the forward integration generates spurious roots. 

Thus it is beneficial to check the validity of the roots obtained by the forward 

integration procedure. 

Another significant advantage with the approach of the differential equa- 

tions is that the initial value problem can be integrated over the range of 

a from e to 2ir, where e approaches 0. The differential equations become 

singular at a = 0. The roots as a approaches 2ir are useful for the solution 

of the crack problem. 
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5. EXAMPLES 

We solve three examples in this section to demonstrate the usefulness of 

the approach in the case of the three different types of differential equations 

considered in Section 3. 

Example 1:  Let us take the transcendental equation for the symmetrical 

roots given by 

sin Aa + A sin a = 0 

for an angular region with clamped boundary conditions. Note that \i = Xa. 

For a = 15°, the first sixteen roots of the transcendental equation in the 

order of increasing positive real part and the corresponding values of £■ are 

evaluated and are given in Table 2. 

Let p. = /i/71-. To get the value of ^ at a = 60°, the differential equation 

dß      —fi cos a + *j- sin a 

da a cos irfi + sin a 

was solved with the initial condition /2(TT/12) given by the values at a = 

15° given above. We used the fourth order Runge-Kutta method given in 

the MATLAB package using a tolerance of le - 10. The values of ß/ir at 

a — 60°, 175°, 225° and 355° obtained by the forward integration method 

are listed in Table 3. The real roots that were not generated by the forward 

integration are listed in Table 4. 
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TABLE 2: Values of A and p/ir at a = 15° for the Clamped case 

JU/TT 

16.099036079369 + 
40.922739395410 + 
65.217933871100 + 

89.376965549419 + 
113.478110132424 + 

137.548757675389 + 

161.601199318519 + 
185.641832424667 + 

209.674337397439 + 
233.700991180886 + 

257.723282631706 + 
281.742228750921 + 
305.758549248677 + 
329.772768581551+ 
353.785278459033 + 
377.796377663910 + 

8.549629866614z 

11.808479416584z 

13.519976459038z 

14.695568014823 z 

15.592891970920z 
16.318980707314z 

16.928883919527i 
17.454722092831 % 
17.916891466163z 
18.329159178917z 

18.701258444435z 
19.040325717266z 
19.351749656939z 
19.639699129280z 
19.907465712142z 
20.157693813903z 

1.341586339947 + 0 

3.410228282951+ 0 
5.434827822592 + 1 

7.448080462452 + 1 

9.456509177702 + 1 

11.462396472949 + 1 

13.466766609877 + 1 
15.470152702056 + 1 
17.472861449787 + 1 
19.475082598407 + 1 

21.476940219309 + 1 
23.478519062577 + 1 
25.479879104056 + 1 
27.481064048463 + 1 
29.482106538253 + 1 
31.483031471993 + 1 

,712469155551z 

,984039951382z 
,126664704920z 

,224630667902 i 
,299407664243z 
,359915058943z 
410740326627z 

,454560174403 z 
,493074288847z 
,527429931576z 

,558438203703z 
,586693809772z 

.612645804745 % 
,636641594107z 
.658955476012z 
.679807817825 z 

The values of ß in Table 3 were verified by solving the transcendental 

equation sin A a + A sin a = 0 for a = 60° and the resulting match was at 

least to the tenth decimal place. 

Example 2:  For the clamped-free case, with v = 0.3, the transcendental 

equation is 

2.31 sin2 \a = 4 - 0.09A2 sin2 a. 

The values of A and ß/ir for a = 15° are listed in Table 5. The differential 

equation 

dß _ 0.497r(f)2[-asin2a + 2sin2a]      < 
da 2.31a sin 2irß + 0.98(^) sin2 a 

was solved with the initial condition ß(ir/12) and the resulting values of ß for 

a = 60° and a = 160° are tabulated in Table 6. Table 7 lists the additional 

roots that were missed by the forward integration procedure. There was also 

a spurious value of ß = 1.550263 + 0.000000z generated at a = 160° that 

does not correspond to a root of the relevant transcendental equation. 
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TABLE 5: Values of A and p/ir at a = 15° for the Clamped-Free case 

A 
10.651024802745 + 

7.610592426966 + 
22.784846703345 + 
35.073902145999 + 

47.233021440439 + 
59.338504245872 + 

71.414977259846 + 
83.473543259896 + 
95.520120582280 + 
107.558209383922 + 
119.590034126021 + 

131.617085967549 + 
143.640406736456 + 
155.660748892999 + 
167.678670940916 + 

179.694597021781 + 
191.708855583596 + 

0.000000000000 * 
1.501062004362» 

6.342239495230» 
8.093194426143i 
9.253448430343z 
10.131592314675i 
10.840846669030* 

11.436757789937* 

11.951029480485» 
12.403569139462» 

12.807735494723» 
13.172944819256» 
13.506091735206» 
13.812380105128» 
14.095836412439» 
14.359641355224» 
14.606352014275» 

fi/lT 

0.887585400229 + 0 
0.634216035580 + 0 

1.898737225279 + 0 
2.922825178833 + 0 
3.936085120037 + 0 

4.944875353823 + 0 
5.951248104987 + 0 

6.956128604991 + 0 
7.960010048523 + 0 
8.963184115327 + 1 

9.965836177168 + 1 
10.968090497296 + 1 
11.970033894705 + 1 
12.971729074417 + 1 
13.973222578401+ 1 
14.974549751815 + 1 
15.975737965210 + 1 

.000000000000» 

.125088500364» 

.528519957936» 

.674432868845 » 

.771120702529» 

.844299359556» 

.903403889086 » 

.953063149161» 

.995919123374» 

.033630761622 i 

.067311291227» 

.097745401605 »' 

.125507644601» 

.151031675427» 

.174653034370» 

.196636779602» 

.217196001190» 

TABLE 6: Values of p/n for the Clamped-Free Case 

a = 60° a = 160° 
1.079931+ 0.000000» 1.744045 (false root) 
0.567564 + 0.190356» 0.501101 + 0.245940* 
1.904356 + 0.457347* 2.505965 + 0.216165» 
2.927638 + 0.611914» 3.509140 + 0.178136» 
3.940002 + 0.711132» 4.513539 + 0.096257» 
4.948141 + 0.785436» 5.363897 + 0.000000» 
5.954037 + 0.845148» 6.251376 + 0.000000» 
6.958558 + 0.895174* 7.121553 + 0.000000» 
7.962160 + 0.938271» 7.978357 + 0.159757» 
8.965111 + 0.976149» 8.980855 + 0.257304* 
9.967581 + 1.009949» 9.982578 + 0.320489» 

10.969685 +1.040473 i 10.983871 + 0.369089» 
11.971501 + 1.068304» 11.984896 +0.409186 i 
12.973088 +1.093882 i 12.985740 + 0.443597» 
13.974487+1.1175461 13.986454 + 0.473889* 
14.975733 + 1.139565» 14.987071 + 0.501033» 
15.976849 + 1.160153» 15.987613 + 0.525682» 
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TABLE 7: Additional values of /x/7r: Clamped-Free case 

a = 60° a = 160° 
5.677769+ 0.000000 z 

6.826798 +0.000000 z 
1.503389 +0.236691z 

Example 3: For the simply supported-free case, with u = 0.3, the transcen- 

dental equation is 

3.3sin2Aa = -0.7Asin2a. 

The values of A and fi/ir for a = 15° are listed in Table 8. 

TABLE 8: Values of A and n/rr at a = 15° for the SS-Free case 

A )U/7T 

7.895591872816 + 0.000000000000z 
9.307012034278 + 0.000000000000z 

20.718871978887 + 2.743152513018 z 
32.777489190922 + 3.676260674920z 
44.813676592684 + 4.288658065852 % 
56.838604582663 + 4.748467761566z 
68.856982193617 + 5.117556866893 z 
80.871175036583 + 5.426171354656z 
92.882514190978 + 5.691485721814z 
104.891811137801 + 5.924226510378z 
116.899591164329 + 6.131555242723z 

128.906210549635 + 6.318496510883i 
140.911920160849 + 6.488713926984z 
152.916902153721 + 6.644962269170z 

164.921292234989 + 6.789365833965 z 
176.925193736710 + 6.923597589457 z 
188.928686829963 + 7.048998802756i 
200.931834739295 + 7.166661433097 z 
212.934688043977 + 7.277486401963 z 
224.937287723129 + 7.382225757249z 

0.657965989401 + 0.000000000000z 

0.775584336190 + 0.000000000000z 
1.726572664907 + 0.228596042752 z 
2.731457432577 + 0.306355056243z 
3.734473049390 + 0.357388172154z 
4.736550381889 + 0.395705646797i 
5.738081849468 + 0.426463072241z 
6.739264586382 + 0.452180946221z 
7.740209515915 + 0.474290476818z 
8.740984261483 + 0.493685542532z 
9.741632597027 + 0.510962936894z 
10.742184212470 + 0.526541375907z 
11.742660013404 + 0.540726160582z 
12.743075179477 + 0.553746855764z 
13.743441019582 + 0.565780486164z 
14.743766144726 + 0.576966465788z 
15.744057235830 + 0.587416566896i 
16.744319561608 + 0.597221786091i 
17.744557336998 + 0.606457200164z 
18.744773976927 + 0.615185479771i 
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TABLE 9: Values of n/ 'TT for the SS-Free Case 

a = 60° a = 160° 

0.548912 + 0.000000 i 0.488073+ 0.000000 z 

0.915801 + 0.000000 i 1.025131+ 0.000000 z 

1.780755 + 0.000000 z 2.050935+ 0.000000 z 

2.738015 +0.155043 z 3.078267 + 0.000000 i 
3.739534 + 0.215478 z 4.108517+ 0.000000 z 

4.740664 + 0.257281 z 5.144743 +0.000000 z 

5.741543 +0.289754 z 6.199987+ 0.000000 z 

6.742251 +0.316452 z 7.246253+ 0.074584 z 

7.742834 + 0.339177 z 8.246425+ 0.113503 z 

8.743324 +0.358984 z 9.246579+ 0.140984 z 

9.743743 + 0.376552 z 10.246719+ 0.163023 z 

10.744106 +0.392343 z 11.246845 + 0.181689 i 
11.744424+ 0.406688 z 12.246961 + 0.197998 i 
12.744705 + 0.419833 z 13.247067 + 0.212541 z 

13.744956+ 0.431965 z 14.247165+ 0.225700 z 

14.745181+ 0.443229 z 15.247255 + 0.237739 i 
15.745384+ 0.453746 z 16.247339 + 0.248847z . 

16.745569+ 0.463602 z 17.247417+ 0.259168 z 

17.745738+ 0.472882 z 18.247490+ 0.268812 z 

18.745892 + 0.481647 z 19.247558 + 0.277869 z 

TABLE 10: Additional values of /x/7r: SS-Free case 

a = 60° a = 160° 

5.072741 +0.000000 z 1.463953+ 0.000000 z 
2.050935 +0.000000 z 
3.412327 + 0.000000 i 
4.382660+ 0.000000 z 
6.292132 +0.000000 z 

The differential equation 

dß      0.7(f) [sin2a-2a cos 2cx] 

da        6.6a cos 2irfi + 0.7 sin 2a 

was solved with the initial condition jl{ir/l2) and the resulting values of ß for 

a = 60° and a = 160° are tabulated in Table 9. Table 10 lists the additional 

roots that were missed by the forward integration procedure. 
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6. CONCLUSIONS 

The roots of the transcendental equations can be found for any arbitrary- 

angular region by solving the associated initial value problem. This proce- 

dure is less time consuming since the alternate method of solving the original 

transcendental equation requires a search procedure in the neighborhood of 

the roots. 
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